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1 Introduction

At low energies, QCD can be described by a chiral effective theory. If the theory is consid-
ered in a finite volume and for small quark masses, the standard p-regime power counting
is replaced by the ε-regime power counting introduced by Gasser and Leutwyler [1]. To
leading order in the ε-regime, the partition function is dominated by the contribution of
the zero-momentum modes of the Nambu-Goldstone (NG) bosons [1, 2]. In this limit the
theory becomes zero-dimensional and is therefore described by chiral random matrix theory
(RMT) [3], see [4, 5] for reviews. The low-energy constants (LEC) appearing in the chiral
effective Lagrangian, which are of great phenomenological importance, can be determined
by fitting analytical results from RMT to lattice data for the eigenvalue spectrum of the
Dirac operator. The lowest-order LECs are Σ and F . While Σ can be determined rather
easily, e.g., from the distribution of the small Dirac eigenvalues, the extraction of F is some-
what more complicated and requires the inclusion of a suitable chemical potential [6, 7].

Since lattice simulations are restricted to a finite volume, it is important to take into
account finite-volume corrections to the RMT results, which can be obtained by going to
next-to-leading order (NLO) in the ε-regime. Recently, finite-volume corrections to the
unquenched partition function of QCD in the ε-regime were obtained in [8, 9]. However,
in order to extract the relevant eigenvalue correlation functions the partially quenched
partition function of QCD is needed. A relatively simple method to obtain the partially
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quenched theory is to introduce n replicated flavors in the unquenched theory and then to
analytically continue in the discrete number of quark flavors to zero. This so-called replica
trick was first used in the theory of disordered systems [10]. It is potentially problematic
since the analytic continuation from an isolated set of points is not uniquely defined. Nev-
ertheless, a number of authors have succeeded to construct proper analytic continuations
from which correct results could be obtained, see, e.g., [11–13]. Several publications in
QCD have used the replica trick for perturbative calculations while borrowing exact result
for the non-perturbative part of the theory from RMT [14–17].

In this publication we choose to use an alternative way to obtain the partially quenched
theory that does not suffer from the potential problems of the replica trick and can therefore
be used to check and extend previous results. In addition to the sea quarks, we introduce
fermionic and bosonic valence quarks. In nuclear physics and condensed matter physics
this method is known as the supersymmetry method or Efetov method for quenched dis-
order [18]. In the context of QCD this idea was first used by Morel [19]. The effective
low-energy theory of QCD with Nf + Nv quarks and Nv bosonic quarks was developed
by Bernard and Golterman [20] and by Sharpe and Shoresh [21]. In this work we use the
effective theory without a singlet particle as discussed by Sharpe and Shoresh and consider
it in a finite volume and for small quark masses. In order to access F in addition to Σ, we
include an imaginary quark chemical potential µ [6, 7]. (A first exploratory lattice study of
this idea was performed in ref. [22].) We compute the partition function at next-to-leading
order in the ε-regime and thereby obtain finite-volume corrections of order 1/

√
V to the

partially quenched theory that translate into finite-volume corrections to the LECs Σ and
F . Our results agree with previous results for the unquenched partition function [1, 8, 9].
As a side result we demonstrate that the parametrization of the NG manifold by Sharpe
and Shoresh leads to the correct universal limit, in analogy to the results of refs. [23, 24]
where a different parametrization was used.

An important question is to what extent the finite-volume effects in the determination
of a particular quantity, such as Σ or F , are universal in the sense that different methods
used to determine this quantity give rise to the same finite-volume effects. In general the
effects of the finite volume depend on the method, see, e.g., the finite-volume effects in the
determination of F in ref. [25]. In the present paper we show that at next-to-leading order
in the ε-expansion the partially quenched partition function is equal to its infinite-volume
counterpart with Σ and F replaced by effective values Σeff and Feff. Since the knowledge
of the analytic form of the partially quenched partition function suffices to determine all
spectral correlation functions of the Dirac operator /D we find that all quantities that can be
expressed in terms of spectral correlation functions of /D give rise to the same finite-volume
corrections to Σ and F .

This paper is structured as follows. In section 2 we review the partially quenched
theory and how it can be used to compute spectral correlation functions. We also review
the corresponding effective low-energy theory in the formulation of Sharpe and Shoresh,
both at fixed vacuum angle θ and at fixed topology ν. In section 3 we compute the finite-
volume corrections of order 1/

√
V to the partially quenched theory, and thus to Σ and F .

We also show that the correct universal limit is obtained from the formulation of Sharpe

– 2 –



J
H
E
P
1
1
(
2
0
0
9
)
0
0
5

and Shoresh. Conclusions are drawn in section 4. An appendix is provided to collect
some useful formulas for the massless propagator in dimensional regularization, including
commonly used shape coefficients.

2 QCD with Nf +Nv quarks and Nv bosonic quarks in a finite volume

In this section we consider QCD with Nf + Nv quarks and Nv bosonic quarks (Morel’s
bosonic spin-1/2 ghost fields [19]) in a box of volume V = L0L1L2L3 in the Euclidean
formalism. The temporal extent of the box is given by L0, and thus the temperature of
the system is T = 1/L0. Unless stated otherwise we consider the partially quenched case
of Nf > 0.

2.1 The partition function and spectral correlation functions

We define QCD with Nf +Nv quarks and Nv bosonic quarks by the partition function

Z =
∫
d[A] e−SYM

[ Nf∏
f=1

det( /D +mf )

][
Nv∏
i=1

det( /D +mvi)
det( /D +m′vi)

]
, (2.1)

where the integral is over all gauge fields A, SYM is the Yang-Mills action, /D is the Dirac
operator, m1, . . . ,mNf

are the masses of the sea quarks, mv1, . . . ,mvNv are the masses of the
fermionic valence quarks, and m′v1, . . . ,m

′
vNv

are the masses of the bosonic valence quarks.
By setting the mass mvi of a valence quark equal to the mass m′vi of the corresponding
bosonic quark, the ratio of determinants of this pair cancels and the flavor i is quenched.

Next we rewrite the determinants in terms of fermionic quark fields ψ and bosonic
quark fields ϕ using

det( /D +m) =
∫
d[ψ̄ψ] e−

R
d4x ψ̄( /D+m)ψ (2.2)

and

1
det( /D +m)

=
∫
d[ϕ̄ϕ] e−

R
d4x ϕ̄( /D+m)ϕ , (2.3)

where ψ and ψ̄ are independent Grassmann variables with Berezin integral
∫
d[ψ̄ψ], and

ϕ and ϕ̄ are commuting complex fields related by complex conjugation, ϕ̄ = ϕ†. The
integrals in the exponents are over space-time. Note that the right-hand side of eq. (2.3)
only converges if all eigenvalues of /D+m have a positive real part. Since /D is anti-Hermitian
this condition is satisfied as long as Rem > 0. Thus

Z =
∫
d[A] d[Ψ̄Ψ] e−SYM−

R
d4x Ψ̄( /D+M)Ψ (2.4)

with mass matrix M = diag(m1, . . . ,mNf
,mv1, . . . ,mvNv ,m

′
v1, . . . ,m

′
vNv

) and fields

Ψ̄ =
(
ψ̄ ϕ̄

)
, Ψ =

(
ψ

ϕ

)
. (2.5)
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At nonzero temperature we have to choose anti-periodic boundary conditions in the tem-
poral direction for the fermionic quarks. A pair of fermionic and bosonic quarks at equal
mass has to cancel in eq. (2.1), and therefore we have to choose anti-periodic bound-
ary conditions in the temporal direction also for the bosonic quarks (in the same way as
Faddeev-Popov ghosts acquire periodic boundary conditions at nonzero temperature [26]).
This will amount to periodic boundary conditions for pseudo-NG fermions composed of
quarks and bosonic anti-quarks (or of anti-quarks and bosonic quarks).

The vacuum expectation value of an operator O is given by

〈O〉 =
1
Z

∫
d[A] d[Ψ̄Ψ]O e−SYM−

R
d4x Ψ̄( /D+M)Ψ . (2.6)

For example, choosing Nv = 1, the presence of a bosonic quark can be used to obtain the
spectral density (or one-point function) of the Dirac operator /D,

ρ(λ) =
〈
Tr δ( /D − iλ)

〉
= lim

ε→0

1
π

Re
〈
Tr( /D − iλ+ ε)−1

〉
, (2.7)

by using

〈
Tr( /D +m)−1

〉
=

∂

∂mv
logZ(m1, . . . ,mNf

;mv,m
′
v)
∣∣∣∣
mv=m′

v=m

. (2.8)

Analogously, higher-order spectral correlation functions can be obtained using Nv = k,
where k is the desired order. From these k-point functions we can also compute individual
eigenvalue distributions [27].

2.2 The effective low-energy theory at fixed vacuum angle θ

In this section we briefly discuss how to determine the relevant low-energy degrees of
freedom for QCD with Nf + Nv quarks and Nv bosonic quarks. For details we refer to
ref. [21]. The general procedure is as follows. We first determine the non-anomalous
symmetries of the Lagrangian that act non-trivially on the vacuum. Then we restrict the
remaining symmetry generators to a subset that is sufficient to generate all Ward identities
associated with the flavor symmetries. This subset of symmetry generators then determines
the relevant NG manifold of the effective low-energy theory. The Lagrangian of the quark
sector is given by

LQ = Ψ̄( /D +M)Ψ , (2.9)

which in the massless case (M = 0) has vector and axial symmetries. The vacuum of
this theory is invariant under the vector symmetry. The axial symmetry, however, acts
non-trivially on the vacuum.1 The axial symmetry is defined by a supermanifold [28] with
base

Gl(Nf +Nv)⊗ [Gl(Nv)/U(Nv)] , (2.10)

1 For the detailed arguments concerning the symmetry breaking pattern of QCD with Nf +Nv quarks

and Nv bosonic quarks we again refer to ref. [21].
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where Gl is the general linear group and U is its unitary subgroup. The factor Gl(Nf +Nv)
acts on the quark sector while Gl(Nv)/U(Nv) acts on the bosonic quark sector [23, 24].
The reason for the smaller symmetry group of the bosonic quark sector is that ϕ and ϕ̄ are
related by complex conjugation, while ψ and ψ̄ are independent in the functional integral.
The measure of the functional integral restricted to the topological sector ν transforms
under axial transformations UA as [29]

d[Ψ̄Ψ]→ Sdetν(UA) d[Ψ̄Ψ] , (2.11)

where Sdet is the superdeterminant [18]. Thus, for ν 6= 0, only axial transformations with
Sdet(UA) = 1 leave the measure invariant, i.e., are non-anomalous. Let us express an
arbitrary axial transformation UA by

UA = exp (iGA) = exp i

(
uA κ̄T

κ u′A

)
, (2.12)

where κ and κ̄ are independent Nv × (Nf +Nv) matrices with elements in the Grassmann
algebra, uA lives in the group algebra of Gl(Nf +Nv), and u′A lives in the group algebra of
Gl(Nv)/U(Nv). The restriction Sdet(UA) = 1 amounts to the requirement of a vanishing
supertrace [18] of GA, i.e., StrGA = TruA − Tru′A = 0. Next we restrict the remaining
axial symmetries to the minimal subset that is necessary to generate all Ward identities of
the full symmetry. Note that Gl(Nf+Nv) contains the same generators as U(Nf+Nv) with
real coordinates replaced by complex ones. Since this does not give rise to additional Ward
identities it is sufficient to keep either the real or the imaginary part of each coordinate.
The choice made in ref. [21] is

GA =

(
π κ̄T

κ iπ′

)
+

iϕ√
(Nf +Nv)NvNf

(
Nv 1Nf +Nv 0

0 (Nf +Nv)1Nv

)
, (2.13)

where π = π† and π′ = π′† are traceless Hermitian matrices of dimension Nf + Nv and
Nv, respectively, ϕ ∈ R, and 1n is the n-dimensional identity matrix. This choice leads to
the correct signs of the kinetic terms of the NG particles in the effective low-energy theory
and will also be used in the rest of this paper. Note that for Nf = 0 also the flavor singlet
particle will give rise to long-range correlations [21] and thus has to be included in the
effective theory.

The transformation properties of the massive theory under axial transformations as
well as the Lorentz group now dictate the form of the Lagrangian of the effective theory [29].
To leading order in U(x), ∂ρU(x), and M we find

Leff =
F 2

4
Str
[
∂ρU(x)−1∂ρU(x)

]
− Σ

2
Str
[
M †U(x) + U(x)−1M

]
, (2.14)

where F and Σ are low-energy constants and the NG manifold U(x) is obtained by pro-
moting the coordinates π, π′, κ, κ̄, and ϕ in eq. (2.13) to fields with

U(x) = exp
(
iGA(x)

)
. (2.15)
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The theory in a θ-vacuum is then obtained by rotating the sea quark masses,

Leff(θ) =
F 2

4
Str
[
∂ρU(x)−1∂ρU(x)

]
− Σ

2
Str
[
M †e−iθ̄/NfU(x) + U(x)−1eiθ̄/NfM

]
, (2.16)

where

θ̄ = θ

(
1Nf

0
0 0

)
(2.17)

is an (Nf +2Nv)-dimensional matrix that projects onto the sea-quark sector. The partition
function of the effective theory at fixed θ is thus given by

Zeff(θ) =
∫
d[U ] e−

R
d4xLeff(θ) , (2.18)

where d[U ] is the invariant integration measure associated with the supermanifold [28].
We restrict ourselves to the effective theory in the rest of this paper and thus drop the
subscript in the following.

2.3 The effective low-energy theory at fixed topology ν

The partition function at fixed θ-angle is given by the Fourier series

Z(θ) =
∞∑

ν=−∞
eiθνZν , (2.19)

and thus the partition function at fixed topological charge ν is obtained by the Fourier
transform

Zν =
1

2π

∫ 2π

0
dθ e−iθνZ(θ) . (2.20)

For the partition function defined in eq. (2.18) this means

Zν =
∫
dθ

∫
d[U ] exp

{
−iθν −

∫
d4x

(
F 2

4
Str
[
∂ρU(x)−1∂ρU(x)

]
− Σ

2
Str
[
M †e−iθ̄/NfU(x) + U(x)−1eiθ̄/NfM

])}
. (2.21)

If we separate the constant mode U0 from U(x) by the ansatz

U(x) = U0 exp
(
iGA(x)

)
(2.22)

with
∫
d4x GA(x) = 0 and U0 = exp(iG0

A), we can absorb θ in U0 by

π0 → π̃0 = π0 −
θ

Nf

(
1Nf

0
0 0

)
, (2.23)
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where π0 is the constant mode of the pion fields in the fermionic quark sector of G0
A. To

avoid confusion with (2.17) we mention that the matrix in (2.23) has dimension Nf +Nv.
Note that we absorb the θ-angle only in the sea sector of the theory. This yields

Zν =
∫
d[U ] Sdetν(U0) exp

{
−
∫
d4x

(
F 2

4
Str
[
∂ρU(x)−1∂ρU(x)

]
− Σ

2
Str
[
M †U(x) + U(x)−1M

])}
, (2.24)

where the integration manifold for the constant mode is changed from (2.13) to

G0
A =

(
π̃0 κ̄T0
κ0 iπ

′
0

)
+

iϕ0√
(Nf +Nv)NvNf

(
Nv 1Nf +Nv 0

0 (Nf +Nv)1Nv

)
, (2.25)

in which π̃0 now generates U(Nf +Nv) instead of SU(Nf +Nv)2 while π′0, κ̄0, κ0 and ϕ0 are
defined in the same way as their counterparts in eq. (2.13). Note that this parametriza-
tion of the constant mode is different from the parametrization used previously in the
literature [23, 24]. In section 3.5 we will show that this parametrization again yields the
universal RMT result.

3 Finite-volume corrections

3.1 The ε-expansion in the effective theory with imaginary chemical potential

For convenience we redefine the NG manifold with a different normalization of the fields by

U(x) = U0 exp
(
i
√

2
F

ξ(x)
)

(3.1)

with

ξ(x) =

(
π(x) κ̄T (x)
κ(x) iπ′(x)

)
+

iϕ(x)√
(Nf +Nv)NvNf

(
Nv 1Nf +Nv 0

0 (Nf +Nv)1Nv

)
. (3.2)

The constant mode is separated in U0, and thus
∫
d4x ξ(x) = 0. For nonzero imaginary

chemical potential the Lagrangian of the effective theory is given by

L =
F 2

4
Str
[
∇ρU(x)−1∇ρU(x)

]
− Σ

2
Str
[
M †U(x) + U(x)−1M

]
(3.3)

with

∇ρU(x) = ∂ρU(x)− iδρ0[C,U(x)] , (3.4)

where C = diag(µ1, . . . , µNf
, µv1, . . . , µvNv , µ

′
v1, . . . , µ

′
vNv

) and iµi is the imaginary chemical
potential of quark flavor i. We use the ε-regime power counting [1] defined by

V ∼ ε−4 , M ∼ ε4 , µ ∼ ε2 , ∂ρ ∼ ε , ξ(x) ∼ ε . (3.5)

2 The addition of 1Nf to the generators of SU(Nf +Nv) suffices to generate U(Nf +Nv). The normal-

ization of θ in eq. (2.23) yields the correct integration domain.

– 7 –
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Note that the expansion in ε2 amounts to an expansion in 1/
√
V . To leading order in ε2

the Lagrangian is given by

L0 =
1
2

Str
[
∂ρξ(x)∂ρξ(x)

]
− Σ

2
Str
[
M †U0 + U−1

0 M
]
− F 2

4
Str [C,U−1

0 ][C,U0] . (3.6)

The next-to-leading order terms in ε2 are

L2 = LM2 + LC2 + LN2 (3.7)

with

LM2 =
Σ

2F 2
Str
[
M †U0ξ(x)2 + ξ(x)2U−1

0 M
]
, (3.8)

LC2 = −1
2

StrU−1
0 CU0[ξ(x), [C, ξ(x)]]− i

2
Str (U−1

0 CU0 + C)[ξ(x), ∂0ξ(x)] , (3.9)

LN2 =
1

12F 2
Str [∂ρξ(x), ξ(x)][∂ρξ(x), ξ(x)]− 1

3
√

2F
Str U−1

0 [C,U0][ξ(x), [∂0ξ(x), ξ(x)]] .

(3.10)

In this section we will integrate out the fluctuations in ξ in order to obtain an effective
finite-volume partition function. The term LM2 couples to U0 and M , and thus corrects the
leading-order mass term. In section 3.3 we discuss its effect on the low-energy constant Σ.
The term LC2 couples to U0 and C and corrects the leading-order chemical potential term.
Its effect on the low-energy constant F is discussed in section 3.4. The first term in LN2 can
be ignored since it does not couple to U0 and therefore only amounts to an overall factor
in the effective finite-volume partition function. The second term in LN2 can be ignored at
the order at which we are working since it does not give rise to leading-order corrections
to Σ or F .

The integration measure for the parametrization of eq. (3.1) is of the form

d[U ] = d[U0]d[ξ]J (ξ) , (3.11)

where d[U0] is the invariant measure for the constant-mode integral, d[ξ] is the flat path
integral measure of the fields ξ, and J (ξ) is the Jacobian corresponding to the change of
variables of eq. (3.1). Since ξ does not contain constant modes the kinetic term in eq. (3.6)
suppresses large fluctuations in ξ, and thus the integrand vanishes at the integration bound-
aries of the π- and π′-fields. Therefore the invariant integration measure is well-defined
and there are no anomalous contributions by Efetov-Wegner terms [30, 31]. The Jacobian
must be of the form

J (ξ) = 1 +O(ε2) (3.12)

since there can be no contribution from a linear term in ξ because of
∫
d4x ξ(x) = 0. Thus,

at next-to-leading order the Jacobian only contributes an overall factor to the effective
finite-volume partition function.3

3 At higher orders in ε the effects of the Jacobian can no longer be absorbed in an overall prefactor of

the partition function.
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3.2 The propagator

The kinetic term of the Lagrangian in terms of the fields π, π′, ϕ, κ̄, and κ is given by

1
2

Str [(∂ρξ)(∂ρξ)] =
1
2

Tr [(∂ρπ)(∂ρπ)] +
1
2

Tr
[
(∂ρπ′)(∂ρπ′)

]
+

1
2

Tr [(∂ρϕ)(∂ρϕ)]

+ (∂ρκ̄ji)(∂ρκji) . (3.13)

Since the mass term LM2 of the Lagrangian, see (3.8), is of order O(ε2), the fields are effec-
tively massless. The massless propagator without zero modes, ∆̄(x), is finite in dimensional
regularization [32]. In appendix A we give explicit expressions for the relevant propagators
used in this work. For the pion fields π and π′ the propagators are given by [9, 33]

〈π(x)abπ(y)cd〉0 = ∆̄(x− y)
[
δadδbc −

1
Nf +Nv

δabδcd

]
, (3.14)

〈
π′(x)abπ′(y)cd

〉
0

= ∆̄(x− y)
[
δadδbc −

1
Nv

δabδcd

]
, (3.15)

where the average is defined by

〈O[ξ]〉0 =
∫
d[ξ]O[ξ] e−

R
d4xL0∫

d[ξ] e−
R
d4x L0

. (3.16)

For the scalar field ϕ and for the fermionic field κ the propagators are easily shown to be

〈κ̄(x)abκ(y)cd〉0 = −∆̄(x− y)δacδbd , (3.17)

〈ϕ(x)ϕ(y)〉0 = ∆̄(x− y) . (3.18)

Using the identities

1
Nf +Nv

+
N2
v

(Nf +Nv)NfNv
=

1
Nf

, (3.19)

− 1
Nv

+
(Nf +Nv)2

(Nf +Nv)NfNv
=

1
Nf

, (3.20)

we thus find the propagator of the composite field ξ to be

〈ξ(x)abξ(y)cd〉0 = ∆̄(x− y)
[
δadδbc(−1)εb − 1

Nf
δabδcd

]
(3.21)

with

εb =

{
0 for 1 ≤ b ≤ Nf +Nv ,

1 for Nf +Nv < b ≤ Nf + 2Nv .
(3.22)

Note that there is no explicit dependence on the number Nv of valence quarks in this
propagator.
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3.3 Finite-volume corrections to Σ

We now integrate out the fluctuations in the O(ε2) mass term LM2 to obtain the finite-
volume corrections to the leading-order mass term in L0. Using (3.21) it is straightforward
to show that

〈Str[Aξ(x)Bξ(y)]〉0 = ∆̄(x− y)
[
StrAStrB − 1

Nf
StrAB

]
. (3.23)

By expanding the action we find that the term∫
d4x

〈
Σ

2F 2
Str
[
M †U0ξ(x)2 + ξ(x)2U−1

0 M
]〉

0

(3.24)

corrects the leading-order mass term in the Lagrangian,

−Σ
2

Str
[
M †U0 + U−1

0 M
]
, (3.25)

to

−Σ
2

[
1−

N2
f − 1
NfF 2

∆̄(0)
]

Str
[
M †U0 + U−1

0 M
]
. (3.26)

Thus at next-to-leading order we can read off an effective low-energy constant Σeff given by

Σeff

Σ
= 1−

N2
f − 1
NfF 2

∆̄(0) . (3.27)

This is the same result as previously derived for the unquenched partition function [1, 8, 9].
It can be shown that at next-to-next-to-leading order (NNLO) it is no longer possible to
absorb the effects of the finite volume in an effective low-energy constant Σeff.

3.4 Finite-volume corrections to F

The calculation of the finite-volume corrections to F is slightly more involved. The non-
vanishing corrections to the leading-order imaginary chemical potential term are given by
eq. (3.9). We first calculate the contribution of the first term in (3.9),

−1
2

∫
d4x

〈
Str U−1

0 CU0[ξ(x), [C, ξ(x)]]
〉

0

= −1
2

∫
d4x

〈
Str U−1

0 CU0[2ξ(x)Cξ(x)− ξ(x)2C − Cξ(x)2]
〉

0

= −V ∆̄(0)
[
(StrC)2 −Nf StrU−1

0 CU0C
]
, (3.28)

where we have used (3.23). The first term in (3.28) couples only to C2 and thus amounts
only to a prefactor in the effective finite-volume partition function. The correction to the
leading-order Lagrangian obtained from (3.28) is thus given by

∆̄(0)
2

Nf Str [C,U−1
0 ][C,U0] . (3.29)
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The contribution of the second term in (3.9) is given by

− i
2

∫
d4x

〈
Str (U−1

0 CU0 + C)[ξ(x), ∂0ξ(x)]
〉

0
∼ ∂0∆̄(0) = 0 (3.30)

due to the symmetry ∆̄(x) = ∆̄(−x). However, the square of this term gives a nonzero
contribution. We need to calculate

−1
2

〈(
− i

2

∫
d4x Str (U−1

0 CU0 + C)[ξ(x), ∂0ξ(x)]
)2
〉

0

=
1
8

∫
d4x

∫
d4y

〈
Str
(
Y [ξ(x), ∂0ξ(x)]

)
Str
(
Y [ξ(y), ∂0ξ(y)]

)〉
0

(3.31)

with Y = U−1
0 CU0 + C. After performing all relevant contractions using (3.21) we find〈

Str[Y ξ(x)ξ(x′)] Str[Y ξ(y)ξ(y′)]
〉

0

= ∆̄(x− x′)∆̄(y − y′)
[
(StrY )2N2

f − 2(StrY )2 +
1
N2
f

(StrY )2

]
+ ∆̄(x− y)∆̄(x′ − y′)

[
(StrY )2 − 2

Nf
StrY 2 +

1
N2
f

(StrY )2

]
+ ∆̄(x− y′)∆̄(x′ − y)

[
Nf StrY 2 − 2

Nf
StrY 2 +

1
N2
f

(StrY )2

]
. (3.32)

Since StrY = 2 StrC does not couple to U0 we only need to take into account the terms
involving StrY 2. We denote the irrelevant terms by “. . .” and write

(3.32) = −StrY 2

Nf
[2∆̄(x− y)∆̄(x′ − y′) + (2−N2

f )∆̄(x− y′)∆̄(x′ − y)] + . . . (3.33)

We need to calculate

(∂x′
0
− ∂x0)(∂y′

0
− ∂y0)

〈
Str[Y ξ(x)ξ(x′)] Str[Y ξ(y)ξ(y′)]

〉
0

∣∣∣
x=x′, y=y′

= −2Nf StrY 2
[(
∂0∆̄(x− y)

)(
∂0∆̄(x− y)

)
−
(
∂2

0∆̄(x− y)
)
∆̄(x− y)

]
+ . . . (3.34)

Thus we find

(3.31) = −V
2
Nf StrY 2

∫
d4x

(
∂0∆̄(x)

)2 + . . . , (3.35)

where we have used the fact that the propagator is periodic in time. Therefore the correc-
tions to the effective Lagrangian are given by

−1
2
Nf Str[C,U−1

0 ][C,U0]
∫
d4x

(
∂0∆̄(x)

)2
. (3.36)

Combining (3.29) and (3.36), we find that the fluctuations correct the leading-order con-
tribution to the Lagrangian,

−F
2

4
Str [C,U−1

0 ][C,U0] , (3.37)
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to

−F
2

4
Str [C,U−1

0 ][C,U0]
[
1−

2Nf

F 2

(
∆̄(0)−

∫
d4x
(
∂0∆̄(x)

)2)]
. (3.38)

Thus at next-to-leading order we find an effective low-energy constant Feff given by

Feff

F
= 1−

Nf

F 2

(
∆̄(0)−

∫
d4x

(
∂0∆̄(x)

)2)
. (3.39)

This again agrees with the result for the unquenched partition function [8, 9]. As in the
case of Σ, at NNLO it is no longer possible to absorb the effects of the finite volume in an
effective low-energy constant Feff.

3.5 The universal limit

In this section we concern ourselves with the limit V → ∞ while keeping MV Σ ∼ O(ε0).
It is well known that QCD in this limit behaves in a universal way and agrees with chiral
RMT. It was first shown in refs. [23, 24] how universal results for the Dirac spectrum
(obtained earlier in RMT) can be derived from the effective low-energy theory. In the
following we show that the correct universal limit also follows from the effective theory in
the formulation of Sharpe and Shoresh described above. For simplicity we restrict ourselves
to the case of vanishing imaginary chemical potential, C = 0.

Since the fluctuations in ξ are suppressed for V → ∞ only the zero-mode integral
survives in this limit, and the partition function for fixed topological charge ν is given by

Zν =
∫
d[U0] Sdetν(U0) exp

(
ΣV
2

Str
[
M †U0 + U−1

0 M
])

, (3.40)

where the integration manifold is specified in eq. (2.25). There are different methods to
calculate integrals over supermanifolds, see, e.g., [34–36]. In our case it is sufficient to
choose an explicit parametrization and reduce the integral to ordinary group integrals. For
convenience we use a slightly different notation and calculate

Zν =
∫
d[U ] Sdetν(U) exp

(
Str
[
M †U + U−1M

])
(3.41)

with integration manifold given by

U =

(
V eNvϕ 0

0 V ′e(Nf +Nv)ϕ

)
exp

(
0 κ̄T

κ 0

)
≡ UcUg , (3.42)

where V ∈ U(Nf +Nv), V ′ ∈ Gl(Nv)/U(Nv) with detV ′ = 1, and ϕ ∈ R. Thus we have

SdetU = detV ≡ eiθ (3.43)

with θ ∈ [0, 2π). This is the zero-mode integral following from the parametrization used
in the perturbative calculation above. In the literature a similar integral was computed
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to determine the static limit of partially quenched chiral perturbation theory [23, 24] that
amounts to replacing Uc by

Uc →

(
V 0
0 V ′eϕ/Nv

)
. (3.44)

Note first that a parametrization such as U = UcUg above leads to factorization of the
corresponding measure as

d[U ] = d[Uc]d[Ug] . (3.45)

This is due to the fact that the invariant length element is

ds2 = Str [dUd(U−1)]

= Str [dUcd(U−1
c ) + dUgd(U−1

g )− 2U−1
c dUcdUgU

−1
g ]

= Str [dUcd(U−1
c ) + dUgd(U−1

g )] (3.46)

since

dUgU
−1
g =

(
0 dκ̄T

dκ 0

)
, (3.47)

U−1
c dUc is block diagonal, and therefore

Str[U−1
c dUcdUgU

−1
g ] = 0 . (3.48)

In both parametrizations the measure of V , V ′, and ϕ also factorizes. Thus

d[U ] = d[Ug]d[V ]d[V ′]dϕ (3.49)

in both cases. Note that this parametrization has no contributions from Efetov-Wegner
terms, as was discussed in a special case in the literature [24]. Introducing the short-hand
notation

UgM
† =

(
Xff Xfb

Xbf Xbb

)
, MU−1

g =

(
Yff Yfb

Ybf Ybb

)
, (3.50)

we find for the first parametrization

Str [M †U +MU−1] = Str [M †UcUg +MU−1
g U−1

c ] = Str [UcX + U−1
c Y ]

= Tr
[
V eNvϕXff − V ′e(Nf +Nv)ϕXbb + V −1e−NvϕYff − V ′−1e−(Nf +Nv)ϕYbb

]
. (3.51)

Next we use a result of [37],∫
U(p)

d[U ] detν(U) exp
[
Tr(AU +BU−1)

]
= cp det(BA−1)ν/2

det
[
µj−1
i Iν+j−1(2µi)

]
∆(µ2)

,

(3.52)

– 13 –



J
H
E
P
1
1
(
2
0
0
9
)
0
0
5

where cp is a constant, ∆(µ2) is the Vandermonde determinant, and the µ2
i are the eigen-

values of AB. Thus the integral over V results in

e−Nv(Nf +Nv)νϕ det(YffX
−1
ff )ν/2

det
[
µj−1
i Iν+j−1(2µi)

]
∆(µ2)

(3.53)

with µ2
i the eigenvalues of XffYff. In the second parametrization we find

Str [M †U +MU−1] = Tr
[
V Xff − V ′eϕ/NvXbb + V −1Yff − V ′−1e−ϕ/NvYbb

]
. (3.54)

Note that in this parametrization we also have an additional factor of e−ϕν from the su-
perdeterminant. Thus the integral over V leads to

e−νϕ det(YffX
−1
ff )ν/2

det
[
µj−1
i Iν+j−1(2µi)

]
∆(µ2)

(3.55)

with µ2
i already defined above. Now we let ϕ→ ϕNv(Nf +Nv) in order to have the same

prefactor of V ′ and V ′−1 in the supertrace. In both parametrizations the resulting integral is∫
d[Ug]d[V ′]

∫ ∞
−∞

dϕ e−νϕ(Nf +Nv)Nv det(YffX
−1
ff )ν/2

det
(
µj−1
i Iν+j−1(2µi)

)
∆(µ2)

× exp
(
−Tr

[
V ′e(Nf +Nv)ϕXbb + V ′−1e−(Nf +Nv)ϕYbb

])
. (3.56)

This completes the matching with refs. [23, 24] and is sufficient to show that the
parametrization of the NG manifold used in this work leads to the correct universal limit.

In order to extend this proof to the general case of C 6= 0 we would need to calculate
the group integral∫

U(p)
d[U ] detν(U) exp

[
Tr(AU +BU−1) + Tr(DUDU−1)

]
, (3.57)

where A, B, and D are arbitrary complex p × p-matrices. This, however, is beyond the
scope of this work.

4 Conclusions

In this work we have calculated the partially quenched partition function of QCD at next-to-
leading order in the ε-expansion at nonzero imaginary chemical potential. We considered a
theory with Nf +Nv fermionic quarks and Nv bosonic quarks, as formulated by Sharpe and
Shoresh [21], in a finite volume V with microscopic quark masses M , i.e., MV Σ = O(ε0).
The knowledge of the analytic form of the partially quenched partition function suffices
to obtain all spectral correlation functions of the Dirac operator /D. In this sense our
results for the finite-volume behavior of the theory hold universally for all observables that
can be obtained from spectral correlation functions of /D. We found that the partially
quenched partition function has the same finite-volume corrections as the unquenched
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Figure 1. Volume-dependence at NLO of the low-energy constants Σeff (left) and Feff (right) in a
symmetric box with dimensions L0 = L1 = L2 = L3 = L at F = 90 MeV.

partition function of QCD with Nf quarks, i.e., at next-to-leading order in ε there are
effective low-energy constants Σeff and Feff,

Σeff

Σ
= 1−

N2
f − 1
NfF 2

∆̄(0) , (3.27)

Feff

F
= 1−

Nf

F 2

(
∆̄(0)−

∫
d4x

(
∂0∆̄(x)

)2)
, (3.39)

where ∆̄(x) is the massless propagator. In appendix A we give closed formulas for the rele-
vant propagators in dimensional regularization and numerical values for typical geometries.
As a side result of our calculation we showed that the constant-mode integral of this theory
agrees with previous results from random matrix theory. Therefore the correct universal
limit is obtained at V → ∞. Note that the proof was only given for vanishing chemical
potential and that the knowledge of the group integral (3.57) is needed to complete the
proof also for nonzero chemical potential.

In figure 1 we show the finite-volume corrections at NLO to the low-energy constants Σ
and F as a function of the box size L in a symmetric box. Note that the effects of the finite
volume increase with the number of sea quark flavors Nf and that, depending on Nf , a box
size of 3−5 fm is necessary to reduce the effects of the finite volume at NLO to about 10%.
The effects are calculated at F = 90 MeV. In figure 2 we show the effect of an asymmetric
box with Nf = 2 and L = 2 fm. An important message of this figure is that the magnitude
of the finite-volume corrections can be significantly reduced by choosing one large spatial
dimension instead of a large temporal dimension. The reason for this behavior is that the
chemical potential only affects the temporal direction, see eq. (3.4), and therefore breaks
the permutation symmetry of the four dimensions. This manifests itself in the propagator∫

d4x
(
∂0∆̄(x)

)2 (4.1)

which, as shown in eq. (A.2), contains a term proportional to L2
0/
√
V , where L0 is the size

of the temporal dimension. This term leads to an enhancement of the corrections in case
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Figure 2. Effect of an asymmetric box with parameters Nf = 2, L = 2 fm, and F = 90 MeV. We
compare a large temporal dimension L0 with L1 = L2 = L3 = L (left) to a large spatial dimension
L3 with L0 = L1 = L2 = L (right).

of a large temporal dimension. Choosing instead one large spatial dimension, the finite-
volume corrections are reduced, unless the asymmetry is too large. For the parameters
used in figure 2, the optimal value is L3/L ≈ 2.

This is good news. Many lattice simulations (at zero chemical potential) are performed
with L1 = L2 = L3 = L and L0 = 2L. To determine F , it suffices to introduce the
imaginary chemical potential in the valence sector. Therefore, one can take a suitable
set of existing dynamical configurations and redefine L0 ↔ L3 before adding the chemical
potential.4 This will minimize the finite-volume corrections for both Σ and F , at least for
the parameter values chosen in figure 2.
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A The massless propagator in dimensional regularization

For convenience we collect in this appendix explicit formulas for the massless propagator
in dimensional regularization, ∆̄(x), that were derived in refs. [32, 33]. The two relevant
quantities for the finite-volume corrections to Σ and F are given by

∆̄(0) = − β1√
V

(A.1)

and ∫
d4x

(
∂0∆̄(x)

)2 = − 1
2
√
V

[
β1 −

L2
0√
V
k00

]
, (A.2)

4 Note that this procedure increases the temperature of the system by a factor of two. One needs to

check that the system does not end up in the chirally restored phase, in which our results no longer apply.
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L0/L 1 2 3 4
β1 0.1404610 0.0836011 −0.0419417 −0.215097
k00 0.0702305 0.0833122 0.0833333 0.0833333

Table 1. Coefficients for an asymmetric box with L1 = L2 = L3 = L and temporal dimension L0.

L3/L 1 2 3 4
β1 0.1404610 0.0836011 −0.0419417 −0.215097
k00 0.0702305 −0.0322630 −0.2984300 −0.731240

Table 2. Coefficients for an asymmetric box with L0 = L1 = L2 = L and spatial dimension L3.
Note that β1 is symmetric under the exchange of the temporal with a spatial dimension.

where β1 and k00 are so-called shape coefficients, i.e., they only depend on the quantities
li = Li/V

1/4 with i = 0, 1, 2, 3. The shape coefficient β1 is given by

β1 =
1

4π

[
2− α̂−1(lj)− α̂−1(l−1

j )
]

(A.3)

with

α̂−1(xj) =
∫ 1

0
dt t−2

[
3∏
j=0

S(x2
j/t)− 1

]
, (A.4)

where S(x) is an elliptic theta-function defined by

S(x) =
∞∑

n=−∞
e−πn

2x . (A.5)

The shape coefficient k00 is given by

k00 =
1
12
−
∑
~n

1
4 sinh(l0qn/2)2

, (A.6)

where the sum is over all integers (n1, n2, n3) 6= (0, 0, 0) and

q2
n =

3∑
j=1

(2πnj/lj)2 . (A.7)

In tables 1 and 2 we give numerical values for common shapes.
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